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At present, radar-based surface soil moisture (SM) retrieval is hampered by the

influence of surface roughness on the backscattering coefficient (s0). Surface

roughness is typically represented by two parameters, namely the standard

deviation of surface heights (s) and the surface correlation length (l). The latter is

a very problematic parameter, since it is extremely variable and very difficult to

measure adequately. Therefore, several authors proposed calibrating it using

backscattering models yielding optimum or effective l values. Baghdadi et al.

found that those effective l were related to the parameter s and the configuration

of the sensor, and proposed an approach to calculate it. The objective of this

study is to evaluate the validity of that approach using data acquired on a

complementary test site. RADARSAT-1 scenes acquired over an experimental

watershed are used. Soil moisture and surface roughness parameters were

measured in detail, coinciding with satellite overpasses. The effective l values

calculated from the equations of Baghdadi et al. (2006) are used to perform

forward and inverse simulations using the Integral Equation Model that are

compared with radar observations and ground measurements of SM. The results

obtained highlight the potential of the evaluated approach towards an

operational radar based soil moisture estimation.

1. Introduction

Active microwave (radar) remote sensing represents an interesting alternative to

classic point-based surface soil moisture (SM) measuring techniques. The dependence

of microwave scattering over bare soil surfaces on the dielectric constant of soils

allows the extraction of soil moisture information from radar observations (Ulaby

et al., 1982). In addition, radar observations cover large areas with a certain

periodicity and have a high spatial resolution. These characteristics make radar-based

soil moisture estimation very attractive to domains like hydrology, agronomy, and

meteorology (Engman, 1991; Pauwels et al., 2001; Schmugge et al., 2002).

Radar-based SM estimation has been intensively studied in the last decades (for

instance: Ulaby et al., 1986; Altese et al., 1996; Biftu and Gan, 1999; Quesney et al.,

2000; Moran et al., 2004; Álvarez-Mozos et al., 2006). Although different techniques

have been developed, at present, the inversion of the Integral Equation Model

(IEM) (Fung, 1994), a theoretical backscattering model with the widest range of

applicability, is the most frequently followed approach for radar-based SM retrieval
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(Altese et al., 1996; Bindlish and Barros, 2000; Moran et al., 2004). The IEM

estimates the backscattering coefficient (s0) of a soil surface once its dielectric

constant (e, directly related to SM), roughness parameters, and sensor configuration

are known. The roughness parameters required by the IEM, and most generally used

in radar applications, are the standard deviation of surface heights (s), the shape of the

autocorrelation function (generally assumed exponential) and the surface correlation

length (l). Thus, the inversion of SM from s0 observations requires the measurement

or estimation of the two roughness parameters s and l. Previous research reveals that

the main problems in the estimation of SM through radar data seem to be related to

the complicated characterisation of those roughness parameters and also to their

spatial variability (Altese et al., 1996; Álvarez-Mozos et al., 2006).

In the case of agricultural surfaces, roughness is primarily related to tillage

practices. Therefore, it should be possible to assign one set of reference roughness

parameters to fields with a specific tillage condition. However, ground measure-

ments reveal that both roughness parameters behave very differently in this sense

(Álvarez-Mozos et al., 2005): while s shows fairly differentiated values for different

tillage classes, l remains highly variable and takes a similar range of values for all

tillage classes. As a result, the uncertainties on the estimation of l are often

translated into great inaccuracies in the retrieved soil moisture values (Altese et al.,

1996; Davidson et al., 2000).

Recent studies (Baghdadi et al., 2002, 2004, 2006) suggested that backscattering

models needed to be calibrated to obtain optimum or effective values of parameter l

that overcame the uncertainties related to its ground measurement and corrected the

imperfections or limitations of the IEM. Baghdadi et al. (2002) obtained effective l

values for several test fields observed under different radar configurations. Their

results revealed that effective l values were a function of the observed s values and of

radar configuration according to an exponential law. On a subsequent article,

Baghdadi et al. (2004) extended their calibration analysis to different radar

configurations in order to explore the role of the acquisition parameters (incidence

angle, polarization, and frequency) and that of the surface correlation function

shape. Over smooth and medium roughness conditions (k?s(3), the exponential

function provided good results, whereas very rough surfaces were better modelled

through fractal correlation functions. Results were consistent with previous

calibration efforts and showed that effective l values were related to their

corresponding s values according to exponential or power-like functions (the latter

were more adequate for very rough surfaces). Besides, the coefficients of those

exponential or power like functions varied depending on the acquisition parameters.

On a latter study (Baghdadi et al., 2006), the influence of the incidence angle on

effective l values was further analysed on observations acquired in C band and hh

and vv polarizations. Baghdadi et al. (2006) proposed the following equation to

obtain effective l values:

leff s, h, ppð Þ~a sb, ð1Þ

where leff refers to effective l, h the incidence angle, and pp the polarization; and a

and b are coefficients that depend on h and pp and can be calculated as:

app~d sin hð Þm ð2Þ

bpp~ghzj, ð3Þ
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where d, m, g, and j are calibration coefficients. The calibration coefficients d and j
are dependent on the polarization, while m and g were found to be independent:

dhh54.026, dvv53.289, m521.744, g520.0025, jhh51.551 and jvv51.222 (Baghdadi

et al., 2006).

The results of Baghdadi et al. (2002, 2004, 2006) are very promising and constitute
a step forward on the development of operational procedures for radar-based soil-

moisture estimation. The proposed calibration improved the performance of the IEM

and, furthermore, reduced the number of unknown surface parameters from three

(SM, s, and l) to two (SM and s) facilitating their inversion from radar observations.

However, the accuracy of the calibration procedure and the validity of the empirical

coefficients on other agricultural areas need to be further evaluated. In this paper,

a case study is presented where the approach of Baghdadi et al. (2006) is evaluated.

The main objective of this paper is to evaluate the validity of the presented

approach using data acquired on a complementary test site. RADARSAT-1 scenes

acquired over an experimental watershed are used. Soil moisture and surface

roughness parameters were measured in detail, coinciding with satellite overpasses.

From the equations of Baghdadi et al. (2006), effective l values are calculated, and

their validity is evaluated using IEM simulations.

2. Materials and methods

2.1 Test site

The research was carried out over a small agricultural watershed located in the

region of Navarre (North of Spain) called La Tejerı́a (figure 1). This watershed is a

part of the Experimental Agricultural Watershed Network of the local Government

Figure 1. Location of La Tejerı́a experimental watershed. The control fields are highlighted.
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of Navarre, established in 1993. The geographical coordinates of the watershed

outlet are 42u44910.60 N and 1u56957.20 W. The watershed covers approximately

170 ha with homogeneous slopes of about 12%, and an altitude ranging from 496 to

649 m. Its climate is humid sub-Mediterranean, with a mean annual temperature of

13uC. The average annual rainfall is about 700 mm distributed over approximately

105 days.

The soils have clayey textures (43% clay, 5% sand, 52% silt) and depths around

1 m. The watershed is almost completely cultivated, and the hedgerows and streams are

the only areas covered by natural vegetation. Winter cereal crops are the main cropping

system. Generally, tillage and soil preparation practices start in September, crops are

sown at the beginning of November, and harvest takes place around the end of June.

The watershed had been equipped with an automated meteorological and

hydrological station. The station has provided precipitation and flow discharge data

on a 10-min basis and daily water quality data since 1994.

2.2 Radar scenes

Five RADARSAT-1 SGF scenes (C band, HH polarization) were used in this study.

The scenes were acquired over Navarre during spring 2003 (27 February, 6 March,

23 March, 30 March, and 2 April). Beam modes S1 and S2 were selected for their

lower incidence angles (on average 23.5u and 27.5u, respectively). Radar observa-

tions acquired at low incidence angles and direct polarization are more appropriate

for soil moisture retrieval, since vegetation-induced attenuation, as well as surface

roughness influence, is minimized (Ulaby et al. 1982).

2.3 Ground measurements

Coinciding with image acquisitions, surface soil moisture and roughness measure-

ments were performed over the catchment. The moisture content of the top 10 cm of

the soil was measured on each image acquisition day using a calibrated TDR probe.

Sixteen control fields were selected over the catchment, and their size ranged from

1.3 to 7.3 ha, with an average value of 4.2 ha. A minimum of three sampling points

were monitored on each control field (on each point, three TDR measurements were

performed), making a total of 60 sampling points along the catchment on each scene

acquisition day. The SM values observed reflected rainfall patterns throughout the

experimental campaign.

Surface roughness was measured using a 1-m-long needle profilometer with a

sampling interval of 2 cm. Surface profiles were collected parallel to the tillage row

direction, only if a clear row pattern was evidenced. Over those fields that did not

present a clear oriented roughness pattern, profiles were collected in all directions. The

aim was to reflect only the random component of roughness, which is the one directly

involved in the backscattering process (Ulaby et al., 1986). Surface roughness was

considered to be invariable in time because the time between acquisitions is small.

Besides, roughness was also assumed to be homogeneous over fields belonging to each

tillage or crop class. Four tillage classes were identified: (a) ‘Rolled vegetables’: very

smooth soils compacted with a compacting roller, chickpeas and beans starting to

germinate at the end of the period, (b) ‘Rolled cereal’: wheat and barley fields where

a compacting roller was applied after sowing, (c) ‘Cereal’: conventionally sown

wheat and barley fields, and (d) ‘Mouldboard’: very rough fields ploughed with a

mouldboard. Measured parameters are shown in table 1.
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Table 1. Ground measured moisture and roughness parameters.

Tillage class
SM range
(cm3 cm23)

No. of
fields

No. of
profiles

Roughness parameters

s range (cm) Average s (cm) ss (cm) l range (cm) Average l (cm) sl (cm)

Rolled vegetables 0.13–0.38 2 16 0.26–0.68 0.47 0.09 1.40–12.12 2.44 2.84
Rolled cereal 0.16–0.36 2 20 0.53–1.37 0.89 0.27 1.06–13.03 3.62 3.26
Cereal 0.13–0.39 11 48 0.51–2.01 1.05 0.34 1.21–10.98 3.49 2.63
Mouldboard 0.17–0.27 1 4 1.95–3.46 2.57 0.72 5.40–10.81 7.41 2.35

For each tillage class, the soil moisture (SM) range (min–max), number of control fields, and measured profiles are given along with the range (min–max),
average, and standard deviation (s) of the s and l parameters.
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During this period, the fields that belonged to ‘Cereal’ and ‘Rolled cereal’ crop

classes presented an emerging cereal crop (the rest had no vegetation). The

characteristics of this vegetation cover were estimated using some reference ground

measurements and a Landsat-7 ETM + scene acquired on 17 March 2003. On

average, the LAI of the cereal cover ranged between 2.15 at the beginning of the

research period and 3.71 at the end, and the vegetation water content MV ranged

between 0.66 kg m22 and 1.32 kg m22. Further details on the experimental period

can be obtained in Álvarez-Mozos et al. (2006).

2.4 Image processing

Radar scenes were processed following standard procedures. The five RADARSAT-

1 SGF scenes were calibrated to obtain backscattering coefficient (s0) values

following the standard approach of Shepherd (2000). The local incidence angle was

calculated taking into account the topography (Ulander, 1996). Next, scenes were

speckle-filtered and geocoded following the ground control point approach. Finally,

field average s0 values were calculated from each scene. Average s0 values were

calculated in linear units and next transformed to dB. As explained most of the fields

in the catchment showed an early cereal crop canopy. The attenuation that such a

canopy might produce on the observed s0 values was corrected by means of a semi-

empirical Water Cloud model (Attema and Ulaby, 1978; Álvarez-Mozos et al.,

2006). Thus, the s0 values analysed in the rest of the study correspond to the soil

contribution to the backscatter.

2.5 Calculation of effective l values

Following the approach proposed Baghdadi et al. (2006) effective l (leff) values were

calculated (using equations (1)–(3)) for the different control fields, using as input the

local incidence angle, polarization, and ground measured s values. Obtained leff

values were later compared with their corresponding ground measured l values.

2.6 Inversion of calibrated l values

To compare and evaluate the leff values calculated with equation (1), calibrated l

(lcal) values were obtained using the IEM. Following a similar approach to that of

Baghdadi et al. (2002, 2004, 2006) lcal values were retrieved from s0 observations

using the IEM and s and SM measurements. The IEM inversion was performed

through a Newton–Raphson iterative algorithm. Depending on the sensor

configuration and surface conditions, two solutions can be obtained (lcal1 and lcal2)

that ensure good agreement between the IEM and the s0 observations (figure 2).

Baghdadi et al. (2006) recommended using the higher value (lcal2), since it provides a

better physical behaviour of s0 as a function of s. Inverted lcal2 values were later

compared with the calculated leff values.

3. Results

The leff values obtained for each tillage class are summarized in table 2. The

calculated leff takes different values depending on its corresponding s, local incidence

angle of each field, and polarization of the scene. The class average leff values and

their variability increase as the tillage class gets rougher. It must be noted that only

class average s values were measured, so the differences observed in the calculated

5402 J. Álvarez-Mozos et al.
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leff values are a consequence of the differences in the local incidence angle of each
field. Large incidence angles give larger leff values. Besides, the influence of the

incidence angle on leff is more prominent over surfaces with large s values. As

expected, no clear relation was evidenced between ground measurements of

parameter l and their corresponding leff values (figure 3).

To evaluate the validity of the method, the IEM was applied using leff to estimate
backscattering values that could be compared with radar observations (figure 4).

The estimated s0 values agreed with RADARSAT-1 observations (figure 4). In the

‘Cereal’ tillage class, the agreement was close, although an overestimation of

approximately 2 dB could be evidenced at low backscatter values. The agreement

was also adequate in the class ‘Rolled cereal’. Some fields that belonged to the class

‘Rolled vegetables’ showed lower s0 estimations than observed on the

RADARSAT-1 scene, but the agreement was in general satisfactory. The

‘Mouldboard’ field showed the weakest agreement. Even if the correlation between
estimated and observed s0 values was positive, there was an offset in the estimations

of around 3–4 dB.

Table 2. Calculated class average effective l (leff) values.

Tillage class hinc range (u) leff range (cm) Average leff (cm) sleff (cm)

Rolled vegetables 14.37–27.92 5.02–14.87 8.66 3.61
Rolled cereal 16.25–27.63 12.97–31.27 21.30 6.13
Cereal 13.92–28.67 15.55–52.07 28.17 9.67
Mouldboard 13.81–28.59 58.97–206.25 142.75 63.08

The local incidence angle (hinc) range is given along with the leff range, its average value, and
standard deviation (sleff).

Figure 2. Sensitivity of the backscattering coefficient s0 to the correlation length l. Obtained
from IEM simulations.

Recent Advances in Quantitative Remote Sensing II 5403
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The IEM was next applied using ground measured l values to compare with the
IEM results obtained using leff. The estimations obtained were also plotted against

SAR observations (figure 5). The root mean square errors (RMSE) of the

Figure 4. Estimated backscattering coefficient using the IEM and leff values (s0
leff) versus

radar observations.

Figure 3. Comparison between calculated effective correlation length values leff and ground
measured l for each control field.

5404 J. Álvarez-Mozos et al.
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estimations were then computed for each tillage class on both cases (IEM

simulations using leff values and using measured l values) (table 3). The agreement

between observations and estimated s0 values using l ground measurements was

very similar to that obtained using leff values (figure 5). The main difference was

observed in the class ‘Mouldboard’ where the backscattering coefficient was severely

underestimated when ground measured l values were used.

The RMSE values calculated summarize the results (table 3). In general, RMSE

values were similar using l ground measurements or leff values. The differences

observed were small except for the ‘Mouldboard’ class.

The calculated leff values were plotted against the lcal2 values retrieved inverting

the IEM (figure 6). The comparison showed a good agreement for low leff values, but

at larger values leff was lower than the retrieved lcal2. The underestimation could be a

consequence of the reduced sensitivity of s0 to l at large l values. This reduced

sensitivity can cause a poorer performance of the approach over rough surfaces, but

further studies are needed to thoroughly analyse the approach on rough conditions.

Figure 5. Estimated backscattering coefficient using the IEM and ground measured l values
(s0

lmeas) versus radar observations.

Table 3. Root mean square error RMSE values obtained between s0 observations and
estimations using leff and lmeas in IEM simulations.

s0 RMSE (dB), using leff s0 RMSE (dB), using lmeas

Period 1
Rolled vegetables 1.15 0.97
Rolled cereal 1.10 2.02
Cereal 1.77 2.27
Mouldboard 2.20 6.82

Recent Advances in Quantitative Remote Sensing II 5405
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Figure 6. Calculated leff compared to retrieved lcal2 for each control field. Retrieved lcal2

values were obtained inverting the IEM using RADARSAT-1 s0 observations and SM and s
ground measurements. Symbols represent the different tillage classes.

Figure 7. Estimated versus ground measured soil moisture (SM). The SM is estimated
inverting the IEM using RADARSAT-1 observations, s measurements and leff values.
Symbols represent the different tillage classes. The root mean square error (rmse) of the
estimations is given for each class.

5406 J. Álvarez-Mozos et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
P
u
b
l
i
c
a
 
d
e
 
N
a
v
a
r
r
a
]
 
A
t
:
 
1
2
:
1
2
 
2
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



Finally, the leff values were used to invert the soil moisture content of the control

fields using the IEM and the s0 observations. Obtained results were plotted in

figure 7. Under dry conditions, SM was underestimated, but in general the results

are promising. The class average RMSE of the estimated SM ranged between

0.06 cm3 cm23 and 0.15 cm3 cm23. These results are satisfactory, especially taking

into account that SM was estimated at the field scale and that the control fields had

an average size of around 4 ha. It must be pointed out that s values were measured

considering homogeneous roughness conditions for each tillage class. Thus, a class

average s estimation was the only necessary roughness parameter to invert SM from

radar observations using this approach.

4. Conclusions

The results of this study show that the methodology proposed by Baghdadi et al.

(2006) for the calculation of the effective correlation length leff is very promising.

The simulations performed with the IEM using leff values agreed reasonably with

observations, on both the forward (estimation of s0) and the inverse (retrieval of

SM) mode. On the latter, the errors in the estimation of SM ranged between

0.06 cm3 cm23 and 0.15 cm3 cm23. It would be convenient to perform additional

evaluations of the approach with alternative observations and data sets, especially

over rough conditions, to thoroughly evaluate its validity.
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